B.A/B.Sc. 6th Semester (Honours) Examination, 2022 (CBCS) Subject: Mathematics Course: BMH6CC13 (Metric Spaces and Complex Analysis)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1. Answer any ten questions $10 \times 2 = 20$ (a)Let (X, d) be a metric space. Show that every convergent sequence in X is a Cauchy[2]sequence.

(b) Let C_0 [0,1] be the metric space of all polynomials with real coefficients defined on [2] closed interval [0,1] with distance function

$$d(P,Q) = \sup_{0 \le t \le 1} |P(t) - Q(t)|,$$

where $P, Q \in C_0[0,1]$. Verify that $C_0[0,1]$ is not complete.

(c) If
$$\{x_n\}$$
 and $\{y_n\}$ are two convergent sequences in a metric space (X, d) , show that

$$\lim_{n \to \infty} d(x_n, y_n) = d\left(\lim_{n \to \infty} x_n, \lim_{n \to \infty} y_n\right).$$
[2]

- (d) If A and B are two compact sets in (\mathbb{R}, d) , prove that $A \times B$ is compact in the [2] Euclidean space \mathbb{R}^2 .
- (e) Examine whether the set $\{(x, y) : x = 0; -2 \le y \le 2\} \cup$ [2] $\{(x, y) : 0 < x < 1; y = 2\sin\frac{1}{x}\}$ is connected in \mathbb{R}^2 with its usual metric.

(f) Let
$$S = \{(x, y): x^2 + y^2 = 1\} \cup \{(x, 0): 1 < x < 2\}$$
. Examine whether S is [2] connected in \mathbb{R}^2 with its usual metric.

(g) Let X = (0, 1/4) be a metric space with the usual metric of \mathbb{R} . Let $T: X \to X$ be [1+1] given by $T(x) = x^2$. Is *T* a contraction mapping? Is there any fixed point of *T* in *X*?

(h)
Prove that
$$f(z) = \begin{cases} \frac{z \, Re(z)}{|z|}, z \neq 0\\ 0, z = 0 \end{cases}$$
[2]

is continuous at z = 0, where $z \in \mathbb{C}$.

(i) Prove that
$$f(z) = Im(z)$$
, $z \in \mathbb{C}$, where $z = x + iy$, is nowhere [2] differentiable.

(j) Show that an analytic function over a region with its derivative zero for every [2] point of the region is constant.

(k) If the power series
$$\sum_{n=0}^{\infty} a_n z^n$$
 converges to $f(z)$ within its circle of convergence, then show that $a_n = \frac{1}{|n|} f^n(0)$. [2]

(1) Define
$$e^z$$
 and prove that $\frac{d}{dz}(e^z) = e^z$. [1+1]

(m) If *C* is the circle |z| = 2 described in the positive sense and if [1+1]

$$g(z_0) = \oint_C \frac{2z^2 - z + 1}{z - z_0} \, dz,$$

show that $g(1) = 4\pi i$. Find $g(z_0)$ whenever $|z_0| > 2$?

(n) Show that
$$\int_C f(z) dz = 0$$
, where the contour *C* is the positively oriented circle [2]
 $|z| = 1$ and $f(z) = \frac{z^2}{z-4}$.

(0)

Prove that
$$\left| \int_{C} \frac{e^{z}}{z+1} dz \right| \le \frac{5\pi e^{5}}{2}$$
, where *C* is the circle $|z| = 5$. [2]

2. Answer any four questions $4 \times 5 = 20$ (a)State and prove Cantor's intersection theorem in a metric space.[1+4]

- (b) Let (X,d) be a metric space and A be a nonempty subset of X. Let $f: X \to \mathbb{R}$ [3+2] be given by $f(x) = d(x, A), x \in X$. Prove that f is uniformly continuous on X. Also show that f(x) = 0 if and only if $x \in \overline{A}$.
- (c) Prove that a sequentially compact metric space is compact. [5]
- (d) Find the upper bound for the absolute value of $\oint_C \frac{e^z}{z+1} dz$, $z \in \mathbb{C}$, where *C* is the [5] circle |z| = 4 described in the positive sense.

(e) If
$$f(z) = u + iv$$
 is an analytic function of $z = x + iy$ and [5]
 $u - v = \frac{e^{y} - \cos x + \sin x}{\cosh y - \cos x}$, find $f(z)$ subject to the condition $f\left(\frac{\pi}{2}\right) = \frac{3-i}{3}$.

(f) Expand
$$f(z) = \frac{1}{(z+1)(z+3)}$$
 in a Laurent's series, valid for the region $1 < |z| < 3$. [5]

3. Answer any two questions

(a) (i) State and prove Baire's category theorem in a metric space. [(1+4)+2] Using Baire's category theorem, show that the set of irrationals with respect to the usual metric of reals is a set of second category.
(ii) Show that every continuous function f: [-1,1] → [-1,1] has at least one fixed [3]

- (ii) Snow that every continuous function $f: [-1, 1] \rightarrow [-1, 1]$ has at least one fixed [5] point in [-1, 1].
- (b) (i) Show that compactness of a metric space implies its sequential compactness. [5]
 - (ii) Let A be a compact set in a metric space (X, d). Prove that there exist $x, y \in A$ such [3] that d(x, y) = diam A.
 - (iii) Prove that every closed subset A of compact metric space (X, d) is compact. [2]
- (c) (i) State and prove Cauchy's integral formula. [1+4]
 - (ii) Evaluate $\oint_C \frac{dz}{z+2}$, where *C* is the circle |z| = 1 described in the positive sense. [1+2]

Hence deduce that $\int_0^{\pi} \frac{1+2\cos\theta}{5+4\cos\theta} d\theta = 0.$

- (iii) If f(z) and $\phi(z)$ are analytic in a region *R* and if they have the same derivative at every point, then show that the functions differ by a constant. [2]
- (d) (i) Define an entire function. Prove that every bounded entire function is [1+3] constant.
 - (ii) Examine the convergence of the series $\sum_{n=0}^{\infty} \frac{z^n}{n!}$, where $z \in \mathbb{C}$. [2]
 - (iii) Define sinh z and cosh z. Prove that $cosh^2 z sinh^2 z = 1 \forall z \in \mathbb{C}$. [2+2]

 $2 \times 10 = 20$