B.A/B.Sc. $6^{\text {th }}$ Semester (Honours) Examination, 2022 (CBCS)
 Subject: Mathematics
 Course: BMH6CC13
 (Metric Spaces and Complex Analysis)

Time: 3 Hours
Full Marks: 60

The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any ten questions

(a) Let (X, d) be a metric space. Show that every convergent sequence in X is a Cauchy sequence.
(b) \quad Let $\mathrm{C}_{0}[0,1]$ be the metric space of all polynomials with real coefficients defined on closed interval $[0,1]$ with distance function

$$
d(P, Q)=\operatorname{Sup}_{0 \leq t \leq 1}|P(t)-Q(t)|,
$$

where $P, Q \in \mathrm{C}_{0}[0,1]$. Verify that $C_{0}[0,1]$ is not complete.
(c) If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are two convergent sequences in a metric space (X, d), show that $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=d\left(\lim _{n \rightarrow \infty} x_{n}, \lim _{n \rightarrow \infty} y_{n}\right)$.
(d) If A and B are two compact sets in (\mathbb{R}, d), prove that $A \times B$ is compact in the Euclidean space \mathbb{R}^{2}.
(e) Examine whether the set $\{(x, y): x=0 ;-2 \leq y \leq 2\} \cup$ $\left\{(x, y): 0<x<1 ; y=2 \sin \frac{1}{x}\right\}$ is connected in \mathbb{R}^{2} with its usual metric.

Let $S=\left\{(x, y): x^{2}+y^{2}=1\right\} \cup\{(x, 0): 1<x<2\}$. Examine whether S is connected in \mathbb{R}^{2} with its usual metric.
(g) Let $X=(0,1 / 4)$ be a metric space with the usual metric of \mathbb{R}. Let $T: X \rightarrow X$ be given by $T(x)=x^{2}$. Is T a contraction mapping? Is there any fixed point of T in X ?
(h)

Prove that $f(z)=\left\{\begin{array}{l}\frac{z \operatorname{Re}(z)}{|z|}, z \neq 0 \\ 0, \quad z=0\end{array}\right.$
is continuous at $z=0$, where $z \in \mathbb{C}$.
(i) Prove that $f(z)=\operatorname{Im}(z), \quad z \in \mathbb{C}$, where $z=x+i y$, is nowhere differentiable.
(j) Show that an analytic function over a region with its derivative zero for every point of the region is constant.
(k)

If the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges to $f(z)$ within its circle of convergence, then show that $a_{n}=\frac{1}{\lfloor n} f^{n}(0)$.
(1)

Define e^{z} and prove that $\frac{d}{d z}\left(e^{z}\right)=e^{z}$.
(m) If C is the circle $|z|=2$ described in the positive sense and if

$$
g\left(\mathrm{z}_{0}\right)=\oint_{C} \frac{2 z^{2}-z+1}{z-z_{0}} d z,
$$

show that $g(1)=4 \pi i$. Find $g\left(z_{0}\right)$ whenever $\left|z_{0}\right|>2$?
(n) Show that $\int_{C} f(z) d z=0$, where the contour C is the positively oriented circle
$|z|=1$ and $f(z)=\frac{z^{2}}{z-4}$.
(o)

Prove that $\left|\int_{C} \frac{e^{z}}{z+1} d z\right| \leq \frac{5 \pi e^{5}}{2}$, where C is the circle $|z|=5$.

2. Answer any four questions

be given by $f(x)=d(x, A), x \in X$. Prove that f is uniformly continuous on X. Also show that $f(x)=0$ if and only if $x \in \bar{A}$.
(c) Prove that a sequentially compact metric space is compact.
(d) Find the upper bound for the absolute value of $\oint_{C} \frac{e^{z}}{z+1} d z, z \in \mathbb{C}$, where C is the circle $|z|=4$ described in the positive sense.
(a) State and prove Cantor's intersection theorem in a metric space.
(b) Let (X, d) be a metric space and A be a nonempty subset of X. Let $f: X \rightarrow \mathbb{R}$
(e) If $f(z)=u+i v$ is an analytic function of $z=x+i y$ and
$u-v=\frac{e^{y}-\cos x+\sin x}{\cosh y-\cos x}$, find $f(z)$ subject to the condition $f\left(\frac{\pi}{2}\right)=\frac{3-i}{3}$.

3. Answer any two questions

(a) (i) State and prove Baire's category theorem in a metric space.

Using Baire's category theorem, show that the set of irrationals with respect to the usual metric of reals is a set of second category.
(ii) Show that every continuous function $f:[-1,1] \rightarrow[-1,1]$ has at least one fixed point in $[-1,1]$.
(b) (i) Show that compactness of a metric space implies its sequential compactness.
(ii) Let A be a compact set in a metric space (X, d). Prove that there exist $x, y \in A$ such that $d(x, y)=\operatorname{diam} A$.
(iii) Prove that every closed subset A of compact metric space (X, d) is compact.
(c) (i) State and prove Cauchy's integral formula.
(ii) Evaluate $\oint_{C} \frac{d z}{z+2}$, where C is the circle $|z|=1$ described in the positive sense.

Hence deduce that $\int_{0}^{\pi} \frac{1+2 \cos \theta}{5+4 \cos \theta} d \theta=0$.
(iii) If $f(z)$ and $\phi(z)$ are analytic in a region R and if they have the same derivative at every point, then show that the functions differ by a constant.
(d) (i) Define an entire function. Prove that every bounded entire function is constant.
(ii) Examine the convergence of the series $\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$, where $z \in \mathbb{C}$.
(iii) Define $\sinh z$ and $\cosh z$. Prove that $\cosh ^{2} z-\sinh ^{2} z=1 \forall z \in \mathbb{C}$.

